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Abstract
Using the nonequilibrium Green function technique we study theoretically spin-polarized
transport in double-barrier tunneling junctions based on a single-level quantum dot interacting
with a local phonon mode. Phonon emission and absorption spectra have been calculated for
arbitrary Coulomb correlations on the dot and for different temperatures. It is shown that in the
nonlinear response regime the electron–phonon interaction gives rise to current suppression in
symmetric junctions as well as to oscillations of the tunnel magnetoresistance (TMR). In
asymmetric junctions, the same mechanism may lead effectively to enhancement of the
diode-like characteristics. We have also found that at sufficiently low temperatures additional
phonon-induced resonance peaks appear in the linear spectral function on both sides of the main
resonance peaks corresponding to the quantum dot energy levels. The case of negative effective
charging energy is also analyzed numerically. A significant enhancement of electric current
(or suppression of TMR) above the threshold bias voltages at which the dot energy level enters
the tunneling window is observed. The gate voltage-controlled rectification effect of the
tunneling current in asymmetric junctions with positive and negative effective Coulomb
correlations is also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electronic transport through discrete levels of single molecules,
carbon nanotubes or quantum dots (QDs) coupled to vi-
brational degrees of freedom has been investigated recently
in a number of experimental [1–10], as well as theoretical
works [11, 13–27]. In particular, it is reported that the non-
resonant tunneling of electrons in single-molecule transistors
is associated with excited vibrational modes of the molecule.
Thus, if the electron–phonon coupling is sufficiently large
then the tunneling electron can absorb or emit phonons, al-
tering its energy, which consequently may influence signifi-
cantly the current–voltage (I –V ) characteristics. It is observed
that in addition to the resonant peak associated with the dis-
crete level of the dot, satellite peaks separated at the phonon
mode frequency also appear in the differential conductance
(see e.g. [1, 3, 7, 9]). In single-molecule transistors inelas-
tic cotunneling processes have been also identified with vibra-
tional quanta of the molecule [10]. The same experiment shows
that when the molecule contains an unpaired electron, then

vibrational satellite features around the Kondo resonance are
observed. A coherent interplay between single-electron tun-
neling and the excitation of localized phonon modes has been
also demonstrated for rigid structures of semiconductor quan-
tum dots. It was realized by investigating transport features
of electron–phonon cavities with quantum dots embedded in a
freestanding GaAs/AlGaAs membrane [8].

Up to now, the polaronic transport through molecular
QDs has been studied theoretically mostly for non-magnetic
tunneling junctions based on quantum dots with vanishing or
infinite charging energy. The interplay between the electron–
phonon interactions and arbitrary Coulomb correlations on the
dot coupled to metallic electrodes has been studied in more
detail by Galperin et al in [26]. In turn, transport properties
of a QD with a negative effective charging energy have been
better understood when, besides single-electron cotunneling,
also electron pair-tunneling processes have been assumed to
occur in the Coulomb blockade regime [22]. Very recently,
tunnel magnetoresistance and Kondo phenomena have been
investigated for the dot coupled to magnetic electrodes [25].
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Numerical analysis of Wang et al [25] was mainly focused on
calculation of spin-dependent density of states as a function of
incident electron energy at zero bias voltage. It is shown that a
set of new peaks induced by the phonon emission may appear
on both sides of the main Kondo peak. Moreover, phonon-
induced oscillatory behavior of the tunnel magnetoresistance
has been predicted in extreme cases of large and vanishing
Coulomb correlations on dots coupled to equivalent external
electrodes.

The present work extends studies on phonon-assisted
electronic transport in mesoscopic systems to the case
of tunneling through a single-level quantum dot with
arbitrary Coulomb correlations, coupled symmetrically or
asymmetrically to ordinary ferromagnetic or half-metallic
electrodes. One of the most widely studied spin-dependent
effects in such magnetic tunnel junctions is the tunnel
magnetoresistance (TMR). This phenomenon appears as a
change in the junction resistance when magnetic moments
of external electrodes are switched between the parallel
alignment and the antiparallel one. The TMR effect is
known to occur in planar junctions [28–30], mesoscopic
double-barrier junctions [31–35, 38–46] as well as in granular
systems [47, 48].

In this paper, TMR is analyzed numerically in a context of
polaronic transport through an interacting quantum dot (or a
molecule). We assume arbitrary Coulomb correlations on
the dot and the cases of both positive and negative effective
charging energy induced by the polaron shift are taken into
account. It is also assumed that to form a polaron, the
strength of electron–phonon interactions is large compared to
the tunneling rates. Such assumptions allow us to derive self-
consistent integrals for the occupation numbers on the dot by
using the nonequilibrium Green function technique based on
equation of motion combined with a canonical Lang–Firsov
transformation, known from the so-called independent boson
model [49].

Several theoretical approaches, within the nonequilibrium
Green function technique, have been used recently to describe
the phonon-assisted tunneling through molecular QDs. This
stimulated a discussion over two different results due to
different approximations applied in calculating the Green
function correlators for the system. One result is that due to
phonon emission at low temperatures phonon satellites in the
spectral function appear only on one side of the main elastic
peak. As shown first by Flensberg [16] and later by Chen
et al [20], the approximation of the Green function correlators
by electron (or holes) contributions only [11, 13–15, 17],
leading to such a behavior, is valid only at high temperatures
and (or) when electrons (or holes) are sufficiently far from
the Fermi surface, or in the weak tunneling limit. The
latter dot-lead coupling regime has been realized in recent
experiments on localized phonon excitations for quantum dots
weakly coupled to the source and drain contacts [3, 8]. As
stated in [8] these measurements may be related to theoretical
predictions [11, 13–17] for transport through a molecular
single-electron transistor coupled to a single-vibrational mode.
These models have also been extended in order to analyze the
origin of the blockade mechanism as well as the effect of Rabi

oscillation-like coherent emission–reabsorption of the phonon
mode, observed in the linear transport regime for a suspended
quantum dot in a phonon cavity.

The other result is that one observes phonon satellites
on both sides of the main resonance peak due to considering
both the electron and hole contributions [24–26]. In our
present discussion, the effects due to both the electron and hole
transport are included and all the Green function correlators
are derived on an equal footing by means of the equation of
motion method applied for nonequilibrium Green functions in
the Hartree–Fock approximation. Thus, the Kondo resonance
effects are beyond the applicability of our approach and these
will be reported elsewhere within other approximations. We
extend the recent studies on electron–phonon interactions in
magnetic tunnel junctions by calculating phonon emission and
absorption spectra for arbitrary (positive or negative) effective
charging energies on the dot. The consequences of the polaron
shift on the electric current as well as on the corresponding
differential conductance are then analyzed for a more general
case of empty, single or doubly occupied dot. The resulting
modifications of TMR are displayed and discussed in both the
linear as well as nonlinear response regimes. The mechanism
leading to oscillations of TMR, the origin of suppression of
spin-polarized tunneling current in symmetric junctions as
well as the origin of enhancement of the diode-like behavior
in asymmetric junctions is explained in terms of phonon-
assisted tunneling processes. We also reconsider studies on
a negative effective charging energy in tunneling junctions.
Here, properties of the TMR characteristics are discussed for
a wide range of bias voltages and for both symmetric and
asymmetric junctions.

The paper is organized as follows. In section 2 we
describe the model of the system. The theoretical method is
described in section 3, where the equation of motion method
is used to derive nonequilibrium Green functions of the dot.
Next, the Green functions are used to calculate transport
characteristics for the system. Relevant numerical results for
spectral functions, tunneling current, conductance as well as
magnetoresistance are presented and discussed in section 4.
Finally, a summary and general conclusions are in section 5.

2. Model

We consider a single-level QD coupled to two ferromagnetic
metallic leads by tunneling barriers. The whole system can be
described by a Hamiltonian of the general form

H = Hl + Hr + Hph + Hd + Ht. (1)

The term Hν describes the left (ν = l) and right (ν = r)
electrodes in the non-interacting quasi-particle approximation,

Hν =
∑

k,σ

εν
kσ a+

νkσ aνkσ , (2)

where εν
kσ is the single-electron energy in the νth electrode for

the wavevector k and spin σ (σ = ↑,↓), whereas a+
νkσ and aνkσ

are the corresponding creation and annihilation operators. The
second term is the phonon Hamiltonian:

Hph = ω0b+b, (3)
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where ω0 is the vibrational frequency of the phonon mode and
b+ (b) is the phonon creation (annihilation) operator. The term
Hd in equation (1) describes QD,

Hd =
∑

σ

[εd + eVg + λ(b + b+)]c+
σ cσ + Un↑n↓, (4)

where εd denotes the energy of the discrete level, which may be
controlled by the gate voltage Vg, U is the electron correlation
parameter, the parameter λ describes strength of the electron–
phonon coupling, c+

σ and cσ is the creation and annihilation
operator, respectively, for electrons with spin orientation σ =
↑ ( ↓), whereas nσ = c+

σ cσ is the occupation operator. Finally,
the tunneling term, Ht, in equation (1) takes the form

Ht =
∑

ν,k,σ

T ν
kσ a+

νkσ cσ + H.c., (5)

where T ν
kσ (ν = l, r ) is the tunneling amplitude, and H.c.

stands for the Hermitian conjugate terms.
Now, it is useful to eliminate the linear coupling terms in

the Hamiltonian Hd by using the following Lang–Firsov-type
unitary transformation [49]:

H̃ = eS H e−S, S = λ

ω0
c+
σ cσ (b+ − b). (6)

With this transformation the fermion and boson operators read

c̃σ = cσ X, (7)

c̃+
σ = c+

σ X+, (8)

b̃ = b −
∑

σ

λ

ω0
c+
σ cσ , (9)

b̃+ = b+ −
∑

σ

λ

ω0
c+
σ cσ , (10)

where X is the phonon operator, X = exp[−(λ/ω0)(b+ − b)].
Thus, the Hamiltonian (1) is reshaped into the following form

H̃ = Hν + Hph + H̃d + H̃t, (11)

where
H̃d =

∑

σ

ε̃dc+
σ cσ + Ũn↑n↓, (12)

with the renormalized dot energy level, ε̃d = εd +eVg−λ2/ω0,
and with the renormalized charging energy, Ũ = U − 2λ2/ω0.
The tunneling matrix elements are also renormalized,

H̃t =
∑

ν,k,σ

T̃ ν
kσ a+

νkσ cσ + H.c., (13)

where T̃ ν
kσ = T ν

kσ X .
Assuming that the local polaron is localized, i.e. assum-

ing that hopping is small compared to electron–phonon inter-
actions, T ν

kσ � λ (same approach as e.g. in [16, 20, 25]),
we adopt here the approximation developed for the inde-
pendent boson model [49], and replace the phonon opera-
tor X in equation (13) with its expectation value, 〈X〉 =

exp[−(λ/ω0)
2(Nph + 1/2)], where Nph is the Bose distribu-

tion, Nph = 1/[exp(βω0) − 1], and β = 1/kBT . Thus, expo-
nential suppression of the tunneling amplitudes in the tunnel-
ing Hamiltonian (13) arises, which in turn leads to the charge
conserving λ-dependent Franck–Condon blockade of tunnel-
ing processes between the dot and an external electrode. As
mentioned, this situation is valid until the tunneling amplitude
does not depend on the polaron position. In a recent theoreti-
cal attempt at going beyond the independent boson model for a
non-magnetic molecular tunneling junction, it has been shown
that when intramolecular vibrations of a longer lifetime take
place then an additional renormalization of the phonon subsys-
tem due to coupling to a tunneling electron occurs [24]. The
latter case is omitted in the present paper. The situation consid-
ered here applies mainly to structures similar to those realized
experimentally so far, in which a dependence of tunneling rates
on the oscillator position is negligible (see e.g. [8]).

3. Green function formalism

To calculate electric current in the nonequilibrium situation
we make use of the nonequilibrium Green function defined
on the Keldysh contour [12]. Accordingly, we introduce the
causal (time-ordered) Green function of the dot, Gσσ ′(t) ≡
−i〈T [cσ (t) c+

σ ′(0)]〉, as well as the lesser and greater
correlation Green function defined as G<

σσ ′(t) ≡ i〈c+
σ ′(0)cσ (t)〉

and G>
σσ ′(t) ≡ −i〈cσ (t)c+

σ ′(0)〉, respectively. From the
canonical transformation given by equations (7) and (8) it
follows that the time-ordered Green function may be separated
into the electron and phonon correlators:

Gσσ ′(t) = [−iθ(t)〈cσ (t) c+
σ ′(0)〉 + iθ(−t)〈c+

σ ′(0) cσ (t)〉]
× 〈X (t) X+(0)〉 + iθ(−t)〈c+

σ ′(0) cσ (t)〉
× 〈[

X+(0)X (t) − X (t)X+(0)
]〉

= G̃σσ ′(t)〈X (t)X+(0)〉 + θ(−t)G̃<
σσ ′(t)

〈[
X+(0), X (t)

]
−
〉
,

(14)

with G̃σσ ′(t) and G̃<
σσ ′(t) being the so-called dressed

correlators for the system governed by the transformed
Hamiltonian (11). Thermodynamic averaging of the phonon
correlators 〈X (t) X+(0)〉 and 〈X+(0) X (t)〉 over the phonon
distributions results in the following expression for the
undressed lesser (greater) Green function G<(>)

σσ ′ (t):

G<(>)
σσ ′ (t) = G̃<(>)

σσ ′ (t) exp[−φ(∓t)]. (15)

where the quantity φ(t) is given by [49]

φ(t) =
(

λ

ω0

)2 [
Nph(1 − eiω0t) + (Nph + 1)(1 − e−iω0 t)

]
.

(16)
If we expand exp[∓φ(t)] in a power series in exp(iω0t),

then using Bessel functions of complex argument, In(z),
equation (16) can be rewritten as:

exp[∓φ(t)] =
+∞∑

n=−∞
Lne∓inω0t , (17)

3
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with

Ln = e
−

(
λ

ω0

)2 (
λ

ω0

)2n (
1

n!
)

(18)

for T = 0 and

Ln = e−( λ
ω0

)2(2Nph+1)e
nω0β

2 In

[
2

(
λ

ω0

)2 √
Nph(Nph + 1)

]

(19)
for T > 0.

The explicit expression for the dressed Green functions
G̃σσ ′(t) and G̃<(>)

σσ ′ (t) can be obtained by using the equation
of motion method. The equation of motion for the Fourier
transforms of the causal and lesser (greater) correlators defined
as G̃σσ ′(ε) ≡ 〈〈cσ | c+

σ ′ 〉〉ε and G̃<(>)

σσ ′ (ε) ≡ 〈〈cσ | c+
σ ′ 〉〉<(>)

ε ,
respectively, read (see e.g. [37])

(ε − ε̃d)〈〈cσ | c+
σ ′ 〉〉ε = δσσ ′

+
∑

k

[
T̃ ∗l

kσ 〈〈alkσ | c+
σ ′ 〉〉ε + T̃ ∗r

kσ 〈〈arkσ | c+
σ ′ 〉〉ε

]

+ Ũ〈〈cσ n−σ | c+
σ ′ 〉〉ε , (20)

(ε − ε̃d)〈〈cσ | c+
σ ′ 〉〉<(>)

ε

=
∑

k

[
T̃ ∗l

kσ 〈〈alkσ | c+
σ ′ 〉〉<(>)

ε + T̃ ∗r
kσ 〈〈arkσ | c+

σ ′ 〉〉<(>)
ε

]

+ Ũ〈〈cσ n−σ | c+
σ ′ 〉〉<(>)

ε . (21)

Applying equation of motion to the three new Green
functions on the rhs of equation (20), one finds

(ε − εν
kσ )〈〈aνkσ | c+

σ ′ 〉〉ε = T̃ ν
kσ 〈〈cσ | c+

σ ′ 〉〉ε , (22)

(ε − ε̃d − Ũ)〈〈cσ n−σ | c+
σ ′ 〉〉ε = 〈n−σ 〉

+
∑

kν

T̃ ∗ν
kσ 〈n−σ 〉〈〈aνkσ | c+

σ ′ 〉〉ε . (23)

In obtaining the equation of motion (23) for the higher-
order Green function we have neglected correlations involving
lead electrons and the Hartree–Fock decoupling scheme was
applied, 〈〈aνkσ n−σ | c+

σ ′ 〉〉ε → 〈n−σ 〉〈〈aνkσ |c+
σ ′ 〉〉ε , where

〈· · ·〉 means the quantum statistical average value of the
appropriate operator. This approximation closes the set of
equations (20), (22) and (23) allowing one to find a solution
for the causal Green functions G̃σσ ′(ε):

G̃σσ (ε) =
ε − ε̃d − Ũ(1 − 〈n−σ 〉)

(ε−̃εd)(ε−̃εd−Ũ) − [ε−̃εd−Ũ(1−〈n−σ 〉)]�̃σ (ε)
, (24)

where �̃σ (ε) is the self-energy including contributions from
the coupling to the leads,

�̃σ (ε) =
∑

k,ν

|T̃ ν
kσ |2

ε − εν
kσ

. (25)

The retarded and advanced Green functions G̃R(A)
σσ (ε) can

be found as G̃R(A)
σσ (ε) = G̃σσ (ε ± iη). Similarly, one can find

�̃R(A)
σ (ε). From equation (24) it follows that the retarded self-

energy has the following form

�̃R
σ (ε) = −

∑

ν

1

2
�̃ν

σ (ε)

[
1

π
ln

(
D + eVν − ε

D − eVν + ε

)
+ i

]
, (26)

where
�̃ν

σ (ε) = e−( λ
ω0

)2(2Nph+1)
�ν

σ (ε), (27)

with
�ν

σ (ε) = 2π
∑

k

|T ν
kσ |2δ(ε − εν

kσ ), (28)

for ν = l, r. It has been assumed that the lower and upper edges
of the electron band at zero bias are at −D and D, respectively.

In the following we assume

�l
↑(↓)(ε) = �l

↑(↓) = �0(1 ± pl) (29)

and
�r

↑(↓)(ε) = �r
↑(↓) = α�0(1 ± pr). (30)

The parameters pl and pr describe the spin asymmetry of the
coupling to the left and right electrodes, respectively, �0 is a
constant, and the parameter α takes into account asymmetry
between coupling of the dot to the left and right electrodes.

Similarly, the correlation Green functions G̃<(>)

σσ ′ (ε) can be
found from the equation of motion (21):

G̃<
σσ ′(ε) = −2i

fl(ε)�
l
σ + fr(ε)�

r
σ

�l + �r
Im G̃R

σσ ′(ε), (31)

G̃>
σσ ′(ε) = 2i

[1 − fl(ε)]�l
σ + [1 − fr(ε)]�r

σ

�l + �r
Im G̃R

σσ ′(ε),

(32)
where fν(ε) is the Fermi–Dirac distribution function for the
νth electrode, fν(ε) = 1/{1 + exp[(ε − μν)/kBT ]}, with
the electrochemical potentials μl = eVl = eV/2 and μr =
eVr = −eV/2. Note that the above equations (31) and (32)
correspond exactly to the formulas presented in [20], obtained
directly from the Keldysh equation for the correlator G̃<

σσ ′(ε).
The average values of the occupation numbers 〈nσ 〉 =

〈c+
σ cσ 〉, which enter the expressions for Green functions, have

to be calculated self-consistently by using the formula

〈nσ 〉 = Im
∫ +∞

−∞
dε

2π
G<

σσ (ε), (33)

which together with equations (15)–(19), (24) and (31) imply
that

〈nσ 〉 = −Im
+∞∑

n=−∞
Ln

×
∫ +∞

−∞
dε

π

[
�l

σ fl(ε + nω0) + �r
σ fr(ε + nω0)

�l
σ + �r

σ

]

× G̃R
σσ (ε + nω0). (34)

Having found the Green functions, one can calculate the
electric current flowing from the νth lead to the dot [50],

Jν = e

h̄

∫ +∞

−∞
dε

2π
Tr

{
Γν[G<(ε) + fν(ε)A(ε)]} , (35)

where the quantity Aσ (ε) stands for the spectral function,

Aσ (ε) = i
[
G>

σσ (ε) − G<
σσ (ε)

]
. (36)

4
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Thus, the symmetrized expression for electric current, J =
(1/2)(Jl − Jr), finally reads

J = e

h

∑

σ

+∞∑

n=−∞
Ln

∫ +∞

−∞
dε

2π
{(�l

σ [1 − fl(ε)]

− �r
σ [1 − fr(ε)])G̃<

σσ (ε + nω0)

+ [�l
σ fl(ε) − �r

σ fr(ε)]G̃>
σσ (ε − nω0)} (37)

whereas the corresponding TMR is given by:

TMR = RAP − RP

RAP
= JP − JAP

JAP
, (38)

where JP(AP) is the electric current flowing through the
system when the spin polarizations of the leads are parallel
(antiparallel).

4. Numerical results

In the following we shall discuss features of the polaronic
transport through symmetric as well as asymmetric tunnel
junctions. In the former case it is assumed that both barriers
are identical, α = 1, and the electrodes are made of the
same ferromagnetic material, pl = pr. Regarding asymmetric
junctions we take into account nonequivalent barriers, α =
1, and assume that pl = pr. In particular, for numerical
calculations we take pl = 0.4, pr = 1, and α = 0.1.
More specifically, it is assumed that the right electrode is made
of a half-metallic material with electrons being totally spin-
polarized at the Fermi level, whereas the factor α = 0.1
indicates that on average electrons can tunnel much more easily
to (from) the left electrode than to (from) the right one.

Note also that in discussion on nonlinear transport, the
effective dot energy level is always assumed to be empty
in the corresponding equilibrium situation, i.e. it is assumed
that ε̃d > 0 at V = 0. Moreover, for clarity of our
presentation, the spectral functions, the electric current as well
as the corresponding conductance will be shown only for the
parallel configuration of the magnetic moments of the external
electrodes. The contribution from the antiparallel configuration
is always present, according to equation (38), in the displayed
TMR ratios. Finally note that the energy, temperature as
well as the strength of the electron–phonon interaction λ is
measured relative to the excitation energy ω0.

4.1. Positive effective Coulomb energy, Ũ > 0

4.1.1. Linear response limit, V = 0. Consider first a
symmetric tunneling junction in the equilibrium situation.
Spectral functions for such a system, versus the energy ω

are shown in figure 1. In the system where electron–phonon
interactions are negligible, λ = 0, only the two resonance
peaks (black solid curves) corresponding to the discrete level
energies εd and εd + U (note that ε̃d = εd and Ũ = U at
λ = 0) are visible. The difference in height and width of
these resonance peaks for up spin and down spin orientations
indicates that one should expect down spin electrons to reside
longer on the dot than up spin ones. It is worth noting here
that qualitatively the same picture would be obtained for the

(a) T=0

A
[2

/ Γ
0]

ω [ω0]
-4 -2 0 2 4 6

spin

(c) T=1.5λ=0
λ=0.6
λ=1

-4 -2 0 2 4 6

(b) T=0

spin

(d) T=1.5

spin

spin

0.0

0.5

1.0

0

1

2

3
0.0

0.5

1.0

0

1

2

3

Figure 1. Spectral function versus energy ω calculated for selected
values of the λ parameter. The spectral functions are plotted for two
different temperatures, T = 0 ((a), (b)) and T = 1.5 ((c), (d)), and
for the both electron spin polarizations in the parallel magnetic
configuration of the junction. The parameters assumed for numerical
calculations are: εd = 0, U = 4, �0 = 0.2, pl = pr = 0.5, Vg = 0
and α = 1.

antiparallel configuration, except that the spectral curves for
opposite spin orientations would overlap. The latter follows
from the fact that in symmetric junctions in the antiparallel
configuration the dot may be occupied by up spin and down
spin electrons with the same probability.

When the electron–phonon interactions are switched on,
the above picture becomes more complex depending on the
strength of the electron–phonon coupling as well as on the
temperature. With increasing strength of the electron–phonon
coupling a shift of the elastic resonances down in energy occurs
(see e.g. red solid lines in figure 1). The position of the
left and right main resonance peaks in figure 1 corresponds
to the renormalized energies ε̃d and ε̃d + Ũ , respectively.
Besides, as the curves calculated for λ = 0.6 show, satellite
sidebands spaced at the phonon energies also appear in the
spectral function. The satellite sidebands appearing on the
right and left side of the main resonances originate from the
particle and hole contributions, respectively. This implies that
in a system near equilibrium, higher-order tunneling processes
may be mediated by the phonon energy levels. Since at
T = 0 there are no phonons to absorb, in figures 1(a)
and (b) only peaks due to virtual phonon emission are
visible.

With increasing temperature phonon absorption satellite
peaks also appear, which are clearly seen in figures 1(c)
and (d) below the resonance at ε̃d. Note also, that in the case
considered of λ = 0.6 one still observes a significant reduction
of the spectral function intensity with increasing temperature.

At sufficiently large λ the process of the polaron shift
towards lower energies is accompanied by a dramatic change
(see the blue dotted lines for λ = 1 in figure 1) in the
spectral function. The resonance peaks become higher and
narrower since, according to equation (27), with increasing
value of the λ parameter the system is trapped in a region of
exponentially suppressed transition rates. This behavior is even
more prominent as the phonon population, Nph, becomes larger
with increasing temperature.

5



J. Phys.: Condens. Matter 20 (2008) 275214 W Rudziński

Figure 2. Linear conductance in the parallel configuration (a) and
TMR (b) as a function of the lead Fermi energy level in the presence
of electron–phonon coupling, λ = 1, and at different temperatures.
The other parameters are as in figure 1. The inset in (b) shows
differences between TMR calculated for λ = 0 (solid line, εd = 1,
U = 2) and λ = 1 (dotted line, εd = 0, U = 4) at T = 0.2.

Figure 2 shows that thermal charge fluctuations lead to
a reduction of the amplitude of the resonance peaks in the
linear conductance as well as to reduction of the corresponding
TMR minima. It is seen that with increasing temperature TMR
approaches the Julliere value between the two dips indicating
an occurrence of coherent tunneling processes through the
discrete dot energy levels [42].

At a fixed temperature the Franck–Condon blockade only
slightly enhances the TMR minima. Such a behavior is
illustrated in the inset in figure 2(b), where a comparison of
TMR for a non-phonon system, λ = 0, and for λ = 1 at
T = 0.2 is displayed. The absence of the vibrational satellite
peaks in the linear transport characteristics at λ = 0 confirms
previous predictions within other theoretical approaches (see
e.g. [19]). It is explained as the crucial consequence of the
presence of Fermi seas in the leads, which gives rise to the
so-called effect of ‘floating’ of phonon sidebands in the I –V
curve at V ≈ 0.

4.1.2. Nonlinear response regime, V = 0. Let us discuss
now electronic transport in a nonequilibrium situation starting
with the case of the symmetric junction at zero temperature,
T = 0. The bias dependence of electric current, differential
conductance as well as the corresponding TMR for such
a system are shown in figures 3(a)–(c). When λ = 0,
the current curve (dotted line in figure 3(a)) has a step-like
profile with two steps appearing at threshold bias voltages at

λ
λ 1

Figure 3. Bias dependence of the electric current, differential
conductance and TMR for the symmetric ((a)–(c)) and asymmetric
((d)–(f)) junction in the parallel configuration. The current–voltage
characteristics for the system without electron–phonon coupling
(dotted curves) are compared to the case of strong electron–phonon
coupling (solid curves). The parameters are pl = pr = 0.5, α = 1
for the symmetric junction and pl = 0.4, pr = 1, α = 0.1 for the
asymmetric case. The other parameters are: ε̃d = 1, Ũ = 2 (U = 4
for λ = 1 and U = 2 for λ = 0), �0 = 0.2, Vg = 0 and T = 0.

which the dot energy levels εd and εd + U cross the Fermi
level of the source electrode. Respectively, the differential
conductance in figure 3(b) experiences two resonance peaks,
whereas the corresponding TMR in figure 3(c) is significantly
enhanced between the two thresholds. The central TMR peak
in the bias voltage region, where the sequential tunneling
current is exponentially suppressed, is due to higher-order
tunneling processes, while the other TMR peaks come from
differences of the sequential tunneling current in the parallel
and antiparallel configurations of magnetic moments in the
external electrodes.

When the hopping of electrons through the tunneling
barriers is accompanied by the phonon cloud, then the
exponential suppression of the tunneling rates gives rise to a
suppression of the electric current in the whole bias voltage
range. On the other hand, tunneling processes may be mediated
by the phonon energy levels, which results in additional Frank–
Condon steps in the current (solid line in figure 3(a)). Hence,
due to a phonon emission at T = 0, vibrational sidebands
in the differential conductance appear (figure 3(b)). The
sidebands are spaced at the phonon energies from the main
resonance peaks appearing at bias voltages at which ε̃d and
ε̃d + Ũ enter the tunneling window. Moreover, figure 3(c)
shows that when λ = 0, then TMR is enhanced below the first
threshold bias voltage. This indicates that electron–phonon
interactions increase the probability of additional higher-
order tunneling processes that may occur in the bias voltage
region where the sequential tunneling current is exponentially
suppressed.
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Figure 4. Map of tunneling current in the asymmetric junction in the
parallel configuration, plotted as a function of the bias voltage and
the bias gate voltage. The parameters are as in figure 3.

The Franck–Condon blockade competing with the
polaron-assisted electron transmission gives rise to TMR
oscillations above the first threshold voltage. First, when the
dot is singly occupied, the tunnel magnetoresistance oscillates
below the TMR curve for the non-phonon system, whereas
above the second threshold, when the dot becomes doubly
occupied, it exceeds the TMR values calculated at λ = 0.

The basic transport property of the asymmetric tunneling
junction is the asymmetry of its current–voltage characteristics
with respect to the bias reversal. It is known that such a
system may work as a mesoscopic diode [34–36]. The typical
diode-like behavior in the tunneling junction with arbitrary
Coulomb correlations on the dot and without electron–phonon
interactions, λ = 0, is represented by the dotted curves in
figures 3(d)–(f). For positive bias (the right lead is the source
electrode), the current flows for both parallel and antiparallel
configurations and thus TMR is significantly suppressed. In
contrast, when electrons tunnel through the dot from the
left electrode to the right (half-metallic) one, then below the
first threshold voltage sequential tunneling is exponentially
suppressed and only the higher-order tunneling processes are
possible. At a sufficiently large bias voltage the energy level ε̃d

(ε̃d = εd at λ = 0) enters the tunneling window, and electric
current starts to flow through the junction. However, this
takes place only in a small voltage range in the vicinity of the
first threshold voltage, where the resonant bump is observed.
Above the bump, the current is suppressed by an electron
residing on the dot and thus a negative differential conductance
accompanied by a significant enhancement of TMR is observed
between the two threshold bias voltages. Finally, when εd + U
crosses the Fermi level of the source lead, the current increases
again and finally saturates at a certain level.

In the presence of electron–phonon interactions, the
electric current (solid line in figure 3(d)) has analogous features
as in the symmetric case, i.e. the appearance of the Franck–
Condon steps in the current is accompanied by a current
suppression. The Franck–Condon blockade diminishes the
height of the current steps and consequently reduces the
height of the resonance peaks of the corresponding differential
conductance (figure 3(e)). In the case considered here, the

Figure 5. Bias dependence of the electric current, differential
conductance and TMR for the symmetric ((a)–(c)) and asymmetric
((d)–(f)) junction in the parallel configuration and in the presence of
strong electron–phonon interactions, λ = 1. The current–voltage
characteristics for the system with positive effective charging energy,
Ũ = 2, i.e. U = 4 (dotted curves) are compared to the case of
negative effective charging energy, Ũ = −2, i.e. U = 0 (solid
curves). The other parameters are as in figure 3.

current suppression is asymmetric with respect to the bias
reversal. Note first that, the magnitude of the current displayed
for λ = 1 in figure 3(d), is still significant at V > 0 and
comparable to the magnitude of the current flowing through
the symmetric junction without electron–phonon interactions
(λ = 0), which is shown in figure 3(a). Second, it is evident
that the current suppression is much larger at negative than
at positive bias. More specifically, when the dot is singly
occupied at V < 0, then the electric current is almost entirely
blocked for the assumed λ = 1. Thus, one may state that
the polaron transmission may effectively enhance the diode-
like behavior in asymmetric junctions with one half-metallic
electrode. As also clearly seen in figure 3(f), when electron–
phonon interactions are present, the tunnel magnetoresistance
between the two thresholds is significantly enhanced at V < 0.
This implies that phonon emission (T = 0) increases the
probability of tunneling processes occurring in which one
electron with spin antiparallel to the magnetization of the
half-metallic (drain) lead is tunneling back to the source
ferromagnetic electrode, while the second electron with the
opposite spin, is tunneling to the drain electrode. Since in the
parallel case there are more states to absorb in the drain half-
metallic electrode, then such processes are more effective in P
rather than in AP configuration, thus leading, in accordance
with equation (38), to the observed enhancement of the
TMR ratio.

The map in figure 4 shows in addition the dependence
of the current rectification effect on the initial position of the
dot energy level relative to the Fermi level of the external
electrodes at V = 0. Until the dot is empty in equilibrium,
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Figure 6. Comparison of the bias-dependent current for different
values of Ũ and λ in the asymmetric junction. The parameters are as
in figures 3(d) and 5(d).

(eVg > −̃εd), the current rectification results from the
Coulomb blockade as well as from the current suppression
between the two threshold bias voltages. By lowering the

dot discrete level the dot may become singly (−̃εd � eVg >

−̃εd−Ũ ) or doubly (eVg � −̃εd −Ũ) occupied in equilibrium.
This way, by decreasing the bias gate voltage one increases
the number of phonon energy levels that may become active
in tunneling events, thus increasing the number of steps in
the current. Simultaneously, the Franck–Condon blockade
gives rise to enlargement of the diamond areas enclosed by the
regions in the eV − eVg plane for which sequential tunneling
processes take place.

4.2. Negative effective Coulomb energy, Ũ < 0

If the polaron shift leads to a negative effective charging
energy, then the first step in the current in figure 5(a) appears
at the bias voltage at which ε̃d + Ũ crosses the Fermi level
of the source electrode. Above this threshold the dot may be
doubly occupied and thus, unlike in symmetric systems with
Ũ > 0, the current enhancement is observed in the whole
bias voltage range. For spin-polarized electronic transmission
the difference between the quantities JP and JAP gives rise to

Figure 7. Maps of electric current ((a), (d)), differential conductance ((b), (e)) and TMR ((c), (f)) as a function of the transport bias voltage
and the bias gate voltage. The curves are calculated for a symmetric junction in the parallel configuration, at two different temperatures,
T = 0 ((a)–(c)) and T = 0.5 ((d)–(f)). The other parameters are: pl = pr = 0.5, α = 1, ε̃d = 1, Ũ = −2 (U = 0), �0 = 0.2 and T = 0.
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the suppression of TMR above the first threshold bias voltage
illustrated in figure 5(c).

The magnitude of the current enhancement in systems
with an asymmetric geometry strongly depends on the bias
polarization. As shown in figure 5(d), above the first threshold
at V > 0, the current–voltage characteristics evaluated for a
negative Ũ overlap with those obtained for a positive Ũ . In this
case electrons are transmitted to the dot from the half-metallic
electrode, which is fully spin-polarized in one direction. Then,
regardless of the sign of the Ũ parameter, above the first
threshold only electrons with one spin orientation may be
transmitted from the half-metallic source electrode to the dot.

The above situation is in contrast to the case of the
negative bias, V < 0. As stated in the preceding subsection,
if Ũ > 0, then above the first threshold the dot may be only
singly occupied and current suppression, due to a down spin
electron in the parallel configuration or an up spin electron
in the antiparallel configuration, occurs until the energy level
ε̃d + Ũ crosses the Fermi level of the source (ferromagnetic)
lead. However when Ũ < 0, then above the first threshold
the dot may become instantly doubly occupied, thus giving
rise to enhancement of the current and consequently to a steep
resonance peak in the differential conductance (figures 5(d)
and (e)). The corresponding symmetric TMR in figure 5(f)
results from the specific position of the dot discrete level ε̃d >

0 relative to the Fermi level of the electrodes at V = 0, so that
ε̃d + Ũ = −̃εd.

In figure 6 a more detailed comparison of the behavior
discussed in figures 3 and 5 for the electric current flowing
through the asymmetric junction at negative bias voltages
between the two thresholds is shown. Note that in contrast
to the case of Ũ > 0, the diode-like behavior practically
disappears and the rectification property is significantly
diminished when the effective charging energy is negative. It is
also seen that due to instantaneous double occupancy above the
first threshold, the electric current at Ũ < 0 may even exceed
the values calculated for the non-phonon system.

The temperature-dependent features of the considered
tunneling junction are emphasized on maps in figure 7, where
the electric current with a Franck–Condon blockade as well
as Coulomb blockade areas is shown in the plane eV − eVg,
together with the corresponding differential conductance and
TMR. There, numerical results for symmetric junctions in the
parallel configuration and at zero temperature are compared
to those obtained at T = 0.5. It is seen that washing out
of the Frank–Condon steps in the current is accompanied by
vanishing oscillations of TMR. Figure 7(e) shows also that
with increasing temperature broad phonon absorption peaks
appear in the differential conductance in the Coulomb blockade
region. The supplementary cross sections in figure 8, taken
at eVg = 1, show in more detail a thermal sensitivity of
the polaronic oscillations of the conductance and the TMR
quantity.

5. Summary and conclusions

Using the nonequilibrium Green function approach we
have considered tunneling through an interacting single-level

Figure 8. Bias dependence of the differential conductance (parallel
configuration) (a) and TMR (b) for selected temperatures and for
eVg = 1. The other parameters are as in figure 6.

quantum dot coupled to ferromagnetic leads, in the presence of
electron–phonon interactions. Phonon emission and absorption
spectra calculated for different temperatures show that in both
linear and nonlinear response regimes spin-polarized electron
transmission may be mediated by the phonon energy levels.
These tunneling processes are accompanied by renormalization
of the dot energy level as well as by appearance of vibrational
sidebands spaced at the phonon energy. In a nonequilibrium
situation a strong enough electron–phonon coupling leads to
a step-like electric current behavior with the Franck–Condon
steps occurring at the threshold bias voltages at which phonon-
assisted electron transmission takes place. Consequently, TMR
oscillations in nonlinear response regime have been observed.

If the effective charging energy is positive, Ũ > 0,
then in symmetric systems the exponential suppression of
the tunneling rates give rise to a suppression of the spin-
polarized current in the whole bias voltage range as well
as to an enhancement of the oscillatory behavior of TMR
above the threshold bias voltage at which the discrete dot
energy level enters the tunneling window. Surprisingly,
however, it is found that for asymmetric junctions with one
electrode being half-metallic, the diode-like features may
be effectively enhanced when the tunneling processes due
to electron–phonon interactions start to increase the current
suppression. Consequently, the current rectification effect
becomes more prominent in the presence of the Franck–
Condon blockade, which, besides the multiplied step-like
current–voltage dependence, gives rise to an enlargement
of the Coulomb blockade diamonds in the electric current
characteristics in the eV –eVg plane.
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When the polaron shift leads to a negative effective
charging energy, Ũ < 0, then the sequential tunneling
processes through the doubly occupied dot competing with
the Franck–Condon blockade mechanism give rise, in contrast
to the positive-Ũ case, to current enhancement beyond the
Coulomb blockade regime in both symmetric as well as
asymmetric junctions. The latter feature leads also to a
significant reduction of the diode-like behavior in asymmetric
tunneling junctions with one half-metallic electrode.

With increasing temperature, the essential feature of spin-
polarized polaronic transport, i.e. oscillations of TMR, are
diminished and eventually disappear in the nonequilibrium
situation at sufficiently small gate bias voltages. This process
is accompanied by a washing out of the Franck–Condon steps
in the current as well as by a broadening and diminishing of
the satellite resonance peaks in the differential conductance.
On the other hand, for T > 0 inelastic cotunneling leads to
the appearance of vibrational absorption sidebands inside the
Coulomb blockade region. Thus, even at higher temperatures
a phonon-induced oscillatory TMR behavior may be observed.
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